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A general solution to the problem of relativistic acceleration of point objects in the noninertial

frame of any of the objects is given in one spatial dimension. The objects are initially at rest in a

common inertial frame and accelerate until they are at rest in a second inertial frame. The starting

time and position of each object, the acceleration rate of each object, and the number of objects are

arbitrary. The solution gives the position and velocity of each object in the noninertial frame of the

host object, and the proper time of each, as functions of the proper time of the host. The method is

based on system states for a pair of objects, and it is found that there are nine series of states which

cover all cases, including those in which objects are separated from the host by its Rindler horizon.

The familiar problems of acceleration of an elastic rod and a (Born) rigid rod are treated, and a

number of examples are given of spaceflight sequences for multiple craft in tandem. # 2024 Published

under an exclusive license by American Association of Physics Teachers.

https://doi.org/10.1119/5.0144523

NOMENCLATURE

a Proper acceleration of the ship
b Proper acceleration of the escort
c Speed of light in vacuum

d; d0; d̂ Position coordinates of escort launch in S; S0; Ŝ
f zð Þ The function

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2
p

S Initial inertial frame; coordinates x, t
S0 Final inertial frame; coordinates x0, t0, velocity v in S

ŜðuÞ instantaneous rest frames; coordinates x̂, t̂, veloci-
ties u in S

t Dimensionless coordinate time variable
tau Elapsed coordinate time, velocity u, acceleration a
ta Characteristic time scale for acceleration a
xa Characteristic distance scale for acceleration a
au Product bucu
b Velocity ratio of escort in R

bu Ratio of velocity u to c
cu Lorentz factor for velocity u

d; d0 Time coordinates of escort docking in S; S0

gj Horizon parameter, escort in state j at ship launch

k; k0; k̂ Time coordinates of escort launch in S; S0; Ŝ
lu Rapidity for velocity u
n Position coordinate of escort in R
v Velocity of S0 in S
q Proper time of the escort
R Rest frame of the ship, successively comoving

with Ŝ uð Þ for 0 � u � v
s Proper time of the ship
s Dimensionless proper time variable

sau Elapsed proper time, velocity u, acceleration a
sij;i0j0 Proper time of ship for transition between wij and

wi0j0

wij State of system with ship state i and escort state j

I. INTRODUCTION

Relativistic acceleration in Minkowski space is important
in a variety of kinematic problems and also connects to grav-
itational dynamics.1,2 Interesting effects have been noted in
the acceleration of extended objects,3–6 which are modeled
as arrays of point objects. Solution in the accelerated frame

is often of interest in these kinematic problems, though the
treatment is typically piecemeal and ad hoc. More broadly,
accelerated frames anchor studies in areas as diverse as vac-
uum and quantum effects.7–9

We have organized a systematic solution to the problem
of acceleration of point objects in noninertial frames in one
spatial dimension. An array of independent objects begins at
rest in one inertial frame and accelerates until it comes to
rest in a second inertial frame. Each object has its own rate
of acceleration and its own starting time and position as
input parameters. The solution gives the position and veloc-
ity of object m in the rest frame of object m� and the proper
time of object m as functions of the proper time of object m�

for arbitrary objects m and m� in the array. The object m� is
the host object and m is its companion.

The analysis is based explicitly on states of a two-object
system, m and m�, defined by the acceleration status of each.
There are nine series of such states possible, deriving from
arrangements of the acceleration periods and from the
Rindler horizon of the host object m�. The applicable series
for a given problem, the object motions in each state, and the
times of transitions between states are uniquely determined
by the input parameters. A sequence index is also introduced,
to distinguish among horizon cases within a series.

In what follows, the acceleration problem will be dis-
cussed largely in terms of a spaceship, object m�, and its
escort, object m, a concrete and convenient example. The
focus, then, is on solution in the rest frame of the ship for a
train of accompanying escorts on an extended spaceflight.
To be clear, though, the solution applies to problems on any
scale, so long as the objects may be considered as points on
that scale. Section II gives the equations of motion for con-
stant acceleration, the coordinate frames, and key event coor-
dinates. Section III defines the system states and tabulates
equations for each, and Sec. IV analyzes the state series,
detailing the effects of the Rindler horizon and defining the
flight sequences. Section V then surveys the results, illustrat-
ing the solution with a number of examples. This includes
the laboratory-scale problems of acceleration of elastic and
rigid rods as well as independent spaceflight problems with
constraints analogous to Born rigidity.

The solution to the acceleration problem describes the
experience of the spaceflight aboard the ship. The
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acceleration of the ship subjects its occupants to a steady
force, but otherwise goes unnoticed within the ship itself. By
contrast, the effect of the acceleration on the position, veloc-
ity, and time rate of the escorts relative to the ship is striking,
and particularly when the escorts too are accelerating. The
escort events are typically remote and, thus, not observable
in real time on the ship, but in an actual flight they could
eventually be reconstructed by shipboard observers.

A summary of the notation used in this paper is given in
the Nomenclature. The quantities in the Nomenclature are
introduced and defined in Secs. II–IV.

II. EQUATIONS OF MOTION

The host object is represented by a spaceship, and its com-
panion is an escort craft. The solution to the acceleration
problem, thus, gives the motion of the escort in the rest
frame of the ship, denoted R. The spacecraft begin parked on
launchpads at rest in the inertial frame S, and at the end of
their journey, they dock to a space station at rest in inertial
frame S0. The frame S0 is in standard configuration1 with S
and its speed with respect to S is v.

For generic velocity u, the Lorentz factor c, the rapidity l,
and two related terms are defined with velocity subscripts,

bu ¼
u

c
; (1a)

cu ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
u

q ; (1b)

au¼ bucu; (1c)

lu¼ artanh bu¼ arcosh cu ¼ arsinh au; (1d)

where the last two equalities follow from the properties of
the hyperbolic functions. For generic acceleration a, define

ta ¼
c

a
; (2a)

xa ¼ cta; (2b)

tau ¼ taau; (3a)

sau ¼ talu: (3b)

Equations (2a) and (2b) give characteristic time and distance
scales, and Eqs. (3a) and (3b), derived below, are trip times,
durations of coordinate and proper time required of a fixed
acceleration to achieve a particular velocity.

The proper acceleration a is in the frame of the accelerated
object. Let x and t be the coordinates and u ¼ dx=dt the
speed of the object in S, and let s be the object’s proper time.
Formally, the proper acceleration is the magnitude of the
four-acceleration, which here is a ¼ c2

uðdu=dsÞ.1,10,11 The
equations of motion for an object with proper acceleration a
are determined by integration of this equation, and for con-
stant a, they are,1

u ¼ c tanh s; (4a)

x ¼ x0 þ xa cosh s� cu0

� �
; (4b)

t ¼ t0 þ ta sinh s� au0ð Þ; (4c)

where we have defined the dimensionless proper time variable,

s ¼ s� s0ð Þ=ta þ lu0
; (4d)

and the subscript “0” denotes initial values, at the lower
bounds of the integrals of the acceleration equation. Note
that this model has jump discontinuities in the acceleration at
its endpoints.11

Equations (4a)–(4d) determine the motion and are com-
plete as written. However, the form

f tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
(5)

is also in common use3,4 and gives

tanh s ¼ t =f tð Þ; (6a)

cosh s ¼ f tð Þ; (6b)

sinh s ¼ t; (6c)

where, from Eq. (4c), the dimensionless coordinate time var-
iable is defined as

t ¼ t� t0ð Þ=ta þ au0
: (6d)

Equations (6a)–(6d) can be used, for example, to simplify
expressions for uðtÞ and xðtÞ from Eqs. (4a)–(4d). They are
used in Sec. III to simplify state equations. Equations
(4a)–(4d) are given in dimensioned form, and for transpar-
ency, the development here retains this form. It is useful,
however, to normalize the time and space variables to the
scales in Eqs. (2a) and (2b), and this is done in the graphs.
Normalization is discussed more fully in Sec. V. Also note
that Eqs. (4b) and (4c) correspond, with appropriate choice
of constants, to transformation relations for Rindler coordi-
nates xR; tR.12 The Rindler frame comoves with the accelerat-
ing object so that the object’s position coordinate xR is a
constant and its coordinate time tR is its proper time. With
t0 ¼ s0 ¼ u0 ¼ 0 and x0 ¼ xa, Eqs. (4b) and (4c) give
s ¼ ta artanh ðct=xÞ ¼ tR, and substituting this in either equa-

tion gives xa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � ðctÞ2

q
¼ xR.12 Rindler coordinates are

useful for indefinitely sustained accelerations, and the sepa-
rations of lines of constant xR correspond to differences in x0

required to achieve Born rigidity for the respective accelera-
tions (see Sec. IV D).

The equations of motion (4a)–(4d) apply in any inertial
frame, and to any object. For the ship, the launch coordi-
nates, for convenience and without loss of generality, are set
to x0 ¼ t0 ¼ x00 ¼ t00 ¼ 0, where x0, t0 are the coordinates of
S0. For both the ship and the escort, the initial velocity in S is
zero, and in S0 it is �v. The S launch coordinates of the
escort are x0 ¼ d and t0 ¼ k, and in S0, these are x00 ¼ d0 and
t00 ¼ k0, where d0 ¼ cvd � avkc and k0 ¼ cvk� avd=c, from
Eqs. (1b) and (1c) with u ¼ v. The proper acceleration of the
ship is a and that of the escort is b, both positive. The symbol
s without a subscript is used generically in Eqs. (4a)–(4d)
and (6a)–(6d) but otherwise denotes the proper time of the
ship, zero at t ¼ 0, and the proper time of the escort is
denoted q.

Some useful general information may be obtained imme-
diately from Eqs. (4a)–(4d). The proper time required for the
ship to reach velocity u is, from Eqs. (4a), (4d), and (1d),
s ¼ talu, or, from Eq. (3b)
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s uð Þ ¼ sau: (7a)

At docking, then, s ¼ sav is the trip time. For the escort in S,
Eq. (4d) is q ¼ ðq� kÞ=tb, so that q ¼ kþ tblu, and at
docking,

q ¼ kþ sbv: (7b)

Equation (4c) then gives the duration of the trip in coordinate
time and Eq. (4b) the acceleration distance. For the ship,
t ¼ ta sinhðsav=taÞ, x ¼ xa½coshðsav=taÞ � 1�, t0 ¼ ta½sinhðsav=
ta þ l�vÞ � a�v�, and x0 ¼ xa½coshðsav=ta þ l�vÞ � c�v�. For
the escort, the equations are very similar, but include k and
d. It is also useful to explicitly define symbols for the escort
docking times,

d ¼ kþ tbv; (8a)

d0 ¼ k0 þ tbv; (8b)

where, from Eq. (3a), tbv ¼ tbav. These results are summa-
rized in Table I, which lists the launch and docking coordi-
nates in the terminal inertial frames.

A noninertial frame is modeled on a continuous succes-
sion of inertial frames.1 A set of inertial frames ŜðuÞ, each in
standard configuration with S and moving with velocity u in
S, is defined, one frame for each ship velocity u; the coordi-
nates are x̂, t̂. These frames, thus, have precisely the same
relation to S as does S0, and Ŝ equations have the same form
as those for S0. Each Ŝ frame is of interest at the time t̂ for
which it is comoving with the ship. From û ¼ 0 in the equa-
tions for the ship in Ŝ, the coordinates at the instant of rest
are

t̂ ¼ tau; (9a)

x̂ ¼ xa 1� cuð Þ (9b)

(cf. Table I). Escort launch coordinates are d̂ ¼ cud � aukc
and k̂ ¼ cuk� aud=c. Note that both terminal frames are
special cases of the Ŝ set, with Ŝð0Þ ¼ S and ŜðvÞ ¼ S0.

The rest frame of the ship R, then, comoves with an ŜðuÞ
frame for all u. Except for u ¼ 0, the origin of R is offset
from that of Ŝ so that the position of the ship in R is fixed to
zero and the time to s. The position of the escort in R is
denoted n. The symbol b, without a subscript, is used for the
velocity (ratio) of the escort in R. At any instantaneous value
of s, a ship rest event is defined by the coordinates of the
ship in ŜðuÞ. Define also a corollary escort event by the posi-
tion coordinate of the escort in this frame at the time coordi-
nate of the ship, that is, the escort event simultaneous in Ŝ
with the rest event. The escort position n then is the differ-
ence in Ŝ position coordinates for the two events, and b is
defined here by the escort velocity in Ŝ.

The coordinates and velocity of the escort, for the corol-
lary event of a given s, are defined in any inertial frame, and
vary widely. The escort proper time q, by contrast, is frame-
independent, defined by the escort worldline. The definition
here of qðsÞ is the proper time of the escort at the corollary
event. The solution to the acceleration problem, then, is a set
of escort equations determining the escort variables nðsÞ,
bðsÞ, and qðsÞ, for all s. These variables are illustrated
graphically in Fig. 1.

III. SYSTEM STATES

The escort equations are parsed according to system states
defined for the two-object system. Each of the two craft, the
ship and the escort, has the following three individual states:

• 0, at rest in S (parked);
• 1, accelerating (in flight); and
• 2, at rest in S0 (docked).

There are then 32 ¼ nine system states wij, where i and j
denote the individual states for the ship and the escort,
respectively.

Table I. Event coordinates in the launch and docking frames.

Ship launch Escort launch Ship docking Escort docking

S t ¼ 0 t ¼ k t ¼ tav t ¼ d
x ¼ 0 x ¼ d x ¼ xaðcv � 1Þ x ¼ d þ xbðcv � 1Þ

S0 t0 ¼ 0 t0 ¼ k0 t0 ¼ tav t0 ¼ d0

x0 ¼ 0 x0 ¼ d0 x0 ¼ xað1� cvÞ x0 ¼ d0 þ xbð1� cvÞ

Fig. 1. Escort variables for the acceleration problem, illustrated by spacetime diagrams in ŜðuÞ for (a) u ¼ 0:3 c and (b) u ¼ 0:6 c, two times sðuÞ in the same

spaceflight. In each diagram, the curve on the right is the worldline of the ship and the curve on the left is the worldline of the escort (b ¼ 2a). In the ship frame

R, the escort position nðsÞ is given by the difference in position coordinates x̂ between the two events in the diagram, the escort velocity bðsÞ is the slope of

the worldline at the corollary event, and the escort proper time qðsÞ is defined by the corollary event. The dashed lines mark escort launch and docking, and

the upper solid line is ship docking. This spaceflight is discussed in Sec. V A.
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The escort equations for a given system state are derived
from the results in Sec. II and Lorentz transformations.
Generally, for states with acceleration, the calculation
includes the equations of motion of accelerating craft in the
frame comoving with the ship, that is, in S, Ŝ; or S0 for
i ¼ 0; 1, or 2, respectively. Explicit derivations of the escort
equations are given here for the three j ¼ 1 states and for
w12, and equations for all nine states are tabulated at the end
of this section.

Equation (4d) for the escort can be written as
q ¼ ðq� kÞ=tb � lq, with lq ¼ 0 in S, q ¼ u in Ŝ, and q ¼ v
in S0. For state w01, the ship frame is S, and Eq. (4c) for the
escort is t ¼ kþ tb sinh q. Since t ¼ s, this gives qðsÞ
directly, and bðsÞ and nðsÞ may be read from Eqs. (4a) and
(4b), respectively.

For w11, escort Eq. (4c) in the ship-rest frame is
t̂ ¼ k̂ þ tb ðsinh q þ auÞ, which, with t̂ ¼ tau from Eq. (9a),
gives q½uðsÞ� ¼ kþ tbfluþ arsinh½ðtau� k̂Þ=tb� au�g, where
uðsÞ is from Eq. (7a). The velocity bðuÞ again follows from
Eq. (4a), and nðuÞ ¼ d̂ þ xbðcoshq� cuÞ � xað1� cuÞ from
Eqs. (4b) and (9b).

For w21, escort Eq. (4c) in S0 is t0 ¼ k0 þ tbðsinh q þ avÞ.
From Table I and Eq. (7a) with u ¼ v, the ship proper time is
s ¼ sav þ t0 � tav, and this gives the equation for qðsÞ, with
bðsÞ and nðsÞ specified as before.

In the case of state w12, define

/ ¼ v� u

1� vu=c2
; (10)

the velocity of S0 in ŜðuÞ, so that bðuÞ ¼ b/. The time coor-
dinate in Ŝ, from Eq. (9a), and the escort position in S0, from
Table I, in the transformation x0 ¼ c/x̂ � a/ct̂ give
x̂ ¼ ½d0 þ xbð1� cvÞ�=c/ þ /tau, and thus, nðuÞ. Then,
substituting for x̂ in t0 ¼ c/ t̂ � a/x̂=c gives t0 ¼ tau=c/
�ðb/=cÞ½d0 þ xbð1� cvÞ�, which determines qðuÞ, given
q ¼ kþ sbv þ t0 � d0 from Eq. (7b) and Table I.

The escort equations for the nine system states are col-
lected in Table II. These states, except for w00, involve accel-
erations directly or indirectly, and the equations reflect
events, such as Eqs. (9a) and (9b), determined by Eqs.
(4a)–(4d) in the coordinates of multiple inertial frames. The
states in the table are arranged in triplets, in order of increas-
ing i, and the patterns are evident. For the j ¼ 1 states, each
of the three escort variables has a consistent form. This fol-
lows from the derivations above, and in the table, Eqs.
(6a)–(6d) are used to simplify the formulas, which enhances

the similarity. With qðsÞ, there are two terms, the arsinh
term plus an offset term which is, interestingly, the proper
time of the escort for its rest event in the ship frame,
Ŝð0 � u � vÞ. Also note that in the w12 formulas, which
involve both u and v, the additivity of rapidities has been
used.

IV. STATE SERIES AND FLIGHT SEQUENCES

The escort equations of Table II determine the escort vari-
ables nðsÞ, bðsÞ, and qðsÞ for any system state wij. A particu-
lar problem is typically limited to a subset of the nine states,
and each state normally applies to a range of ship proper
times s. The relations giving the system state wij as a func-
tion of s come from the state series and its transition times.

The five parameters v, a, b, d; and k on which the escort
equations are based uniquely determine a series of system
states. There are nine series possible, and they are fundamen-
tal, and exhaustive. To distinguish physically separate cases
contained within individual series, a set of flight sequences is
defined which is closely related, and supplemental, to the
state series.

The sequences are divided by launch order, escort-first or
ship-first, and there are three basic arrangements for the
accelerations. The time intervals during which the two craft
accelerate can be separate, with no time points in common;
they can be inclusive, one interval contained within the
other; or they can overlap, sharing some but not all points.
This gives six sequence types, and each is designated with a
flight index, 1–6, as defined in Fig. 2. The ship acceleration
window is defined by

0 � s < sav; (11a)

and the escort acceleration window is defined by

s kð Þjmin � s < s kþ sbvð Þjmax; (11b)

where sðqÞ is the inverse function of qðsÞ from Table II, and
the min/max stipulations refer to horizon cases.

The sequence is, thus, determined by the order of launch
and docking events in the ship frame R, and this order is
known from coordinates in S and S0. The order of events rela-
tive to ship launch is the same in S and R, and the order rela-
tive to ship docking is the same in S0 and R. That is, for the
ship, escort launch [docking] occurs before ship launch for k
[d]< 0 and afterward for k [d]> 0; likewise, escort launch
[docking] precedes ship docking for k0 [d0]< tav and follows

Table II. Escort equations for the nine system states, wij, giving the escort position nðsÞ and velocity bðsÞ in the ship frame R and the escort proper time qðsÞ
for all s, the ship proper time. Equation (7a) connects the terms in u, the velocity of the ship in S, with s for the i ¼ 1 states, and Eq. (10) defines the velocity /
for w12.

wij nðsÞ bðsÞ qðsÞ

w00 d 0 s
w01 d þ xb½f ðtÞ � 1� t =f ðtÞ kþ tb arsinh t, where t ¼ ðs� kÞ=tb

w02 d � xbð1� 1=cvÞ þ bvcðs� kÞ bv s=cv þ tbðlv � bvÞ þ kð1� 1=cvÞ
w10 d=cu � xað1� 1=cuÞ �bu buðta þ d=cÞ
w11 d̂ þ xb½f ðt̂ Þ � cu� þ xaðcu � 1Þ t̂ =f ðt̂ Þ kþ tbðlu þ arsinh t̂ Þ, where t̂ ¼ ðtaau � k̂Þ=tb � au

w12 ½d0 � xbðcv � 1Þ þ xaðcv � c/Þ�=c/ b/ kþ tblv � k0 � ½auðtb � taÞ þ a/ðtb þ d0=cÞ�=c/

w20 d=cv � bvc½sþ taðav � lvÞ� þ xaðcv � 1Þ �bv bvd=cþ ½sþ taðav � lvÞ�=cv

w21 d0 þ xb½f ðt0 Þ � cv� þ xaðcv � 1Þ t0 =f ðt0 Þ kþ tbðlv þ arsinh t0 Þ, where t0 ¼ ½s� k0 þ taðav � lvÞ�=tb � av

w22 d0 � ðxb � xaÞðcv � 1Þ 0 sþ k� k0 � ðtb � taÞðav � lvÞ
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it for k0 [d0]> tav. The order of the states in a sequence then
can be read from the time rows of Table I.

However, because of the ship’s acceleration, R represents
a range of inertial frames from S to S0, and for escorts beyond
the Rindler horizon of the ship, this can lead to transitions, in
R, in order of decreasing j. This in turn accounts for three
additional state series. The escort state may change from
docked to flight, or from flight to parked, or both, during the
acceleration of the ship. The nine state series for the problem
in essence comprise one series for each flight index and one
for each of the decreasing j cases. The flight sequences then
subdivide the series which apply to multiple horizon states,
and serve to emphasize flight index and horizon conditions.

A. Rindler horizon

At ship launch, a Rindler horizon forms at a distance �xa,
behind the ship, in the direction opposite the accelera-
tion.1,6,12,13 The Rindler horizon is an apparent horizon, so
that while events within it are unaffected by it, events
beyond it cannot affect the ship during acceleration.
Defining the horizon parameter, g � nðs ¼ 0Þ þ xa, the
escort will be inside, outside, or on this horizon for g posi-
tive, negative, or zero, respectively. The state of the escort at
ship launch defines a launch index jðs ¼ 0Þ, and there is a
state horizon parameter gj for each j. From the w1j equations
(or the w0j equations) in Table II,

g0 ¼ xa þ d; (12a)

g1 ¼ g0 þ xb½ f k=tbð Þ � 1�; (12b)

g2 ¼ g0 þ xb cv � 1ð Þ � vd: (12c)

Note that g1 ¼ g2 for d ¼ 0, and g1 > g2 otherwise.
For g¼ 0, the derivative dq=ds vanishes for the duration

of the acceleration, and the proper time of the escort is fro-
zen in R. For g < 0, the derivative becomes negative.
Because R comoves with multiple inertial frames, a given
value of q can occur for more than one value of s. This hap-
pens only for g � 0, and it is fundamentally due to the rela-
tivity of simultaneity. Causally, the ship and the escort
become disconnected in the sense that signals from the escort

cannot reach the ship while it accelerates, but the ship
remains visible to the escort.

An example of this behavior is an escort event d; e with
time e < 0 in S for d=c < e=bv � ta. This event will occur in
S before t ¼ 0 (ship launch) and in S0 after t0 ¼ tav (docking).
The ship is at rest in S for the event and, because of its accel-
eration, subsequently at rest in S0 for the same event. (The
event, however, is not observable to the ship in S, since
d < ce.) The acceleration makes it possible for a single
observer to be at rest in both frames for the d; e event, but
quite apart from this, the order of events, d; e vs. launch or
docking, is opposite in the two frames.

Whereas before launch sðq ¼ eÞ ¼ e, after docking
s ¼ t0 þ sav � tav, which gives sðeÞ ¼ sav þ cve� avg0=c
> sav. During acceleration, the ŜðuÞ frame with coordinate
time t̂ ¼ tau for the d; e event satisfies bu ¼ e=ðta þ d=cÞ
< bv, giving 0 < s < sav. There are, thus, three distinct val-
ues of sðeÞ, for the ship at rest in S, S0, and one of the ŜðuÞ
frames.

In the general case, the conditions for opposite order of
occurrence in separate frames for a pair of events are
ðcDtÞ2 < ðb2DxÞ2 and b2DxDt > 0, where Dx and Dt are the
coordinate differences between events in any frame, and cb2

is the velocity in that frame of any other frame. As described
in Sec. II, the ship rest event in a given ŜðuÞ is associated
with a corollary escort event. Even though, in a given ŜðuÞ,
the ship rest event occurs after the rest events of all slower
frames, and before the events of faster frames, it can be
shown from the opposite order conditions that the reverse is
true for the corollary events when g < 0. That is, the ship
rest event in ŜðuÞ occurs before the corollary events of
slower frames, and after events of faster frames. Conversely,
the corollary events occur in parallel order to the ship events
when g > 0.

Figure 3 shows an example with g < 0 for two ŜðuÞ
frames. In Ŝð0:6cÞ, Fig. 3(b), the ship rest event occurs
before the corollary event of Ŝð0:3cÞ. Similarly, it is also
clear from the escort worldlines in the two diagrams that
qðsÞ is smaller for the larger u. In Fig. 1, by comparison,
g > 0, and the B and D events (not shown) both occur after
ship rest in (a), while both A and C (not shown) precede ship
rest in (b).

This pattern of dt=ds < 0 is reminiscent of analyses
involving 6Rindler coordinate wedges, in which oppositely
directed accelerations in extra-horizon regions persist indefi-
nitely.6,7 However, the accelerations in the analysis here,
which is based in Minkowski coordinates, are codirectional
and transient, as well as, in many cases, separate in time.

B. Transition times

The series of system states comprising the spaceflight
determine which equations in Table II are applicable, and in
what order. Also important are the transition times, the
proper times of the ship at which the system transitions from
one state to another, that is, s for launch and docking events.
The transition times are s ¼ 0, s ¼ sav; and s ¼ sðqÞ for
q ¼ k and q ¼ kþ sbv. These times are written with state
index subscripts, as for example s01;11 for ship launch during
escort acceleration. By convention, the state indexes for all
transition times are given in order of increasing i and j,
regardless of the sign of dq=ds.

For escort launch during the ship acceleration, the Ŝ frame
is identified by k̂ ¼ tau, which gives

Fig. 2. Flight indexes. The acceleration periods are depicted as bars, blue

(upper) for the ship and red (lower) for the escort, with time increasing to

the right. Each of the two launch orders has three categories, separate (1,6),

overlapped (2,5), and inclusive (3,4). The k ¼ 0 cases are assigned index 3

for d0 � tav and index 4 for d0 < tav.
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bg0 ¼ ck: (13a)

If g0 6¼ 0 and the ratio is nonnegative,

s10;11 ¼ ta artanh ck=g0ð Þ: (13b)

When both sides of Eq. (13a) are negative, which occurs for
the key combination g1 < 0, k < 0,

sav � s10;11 $ k0 � tav; (13c)

where the double arrow is defined, ad hoc, to mean that the
two functions have the same sign and the same zeros. That
is, sav ¼ s10;11 for k0 ¼ tav, s10;11 < sav for k0 > tav and
s10;11 > sav for k0 < tav.

The Ŝ time coordinate for escort docking t̂ ¼ cud� au½d
þ xbðcv � 1Þ�=c leads to

bu g2 þ vdð Þ ¼ cd (14a)

and again provided the ratio is nonnegative,

s11;12 ¼ ta artanh½cd= g2 þ vdð Þ�: (14b)

For the combination g2 < 0, d < 0, both sides of Eq. (14a)—
and of Eq. (13a)—are negative, and

sav � s11;12 $ d0 � tav: (14c)

Apart from the boundary cases k ¼ 0, d ¼ 0, k0 ¼ tav; and
d0 ¼ tav, a system state transition changes either i or j but not
both, and for simplicity, only these transitions are defined. The
boundary cases are modeled as pairs of concurrent transitions.
For example, the middle state in the transition pair w00 ! w01

! w11 at 0 > k ffi 0 becomes superfluous for k ¼ 0, but for-
mally it remains part of the series. There are then 12 transition
times, Di ¼ 1; j ¼ 0; 1; 2, and Djj j ¼ 1; i ¼ 0; 1; 2.

C. Flight sequence indexes

The flight sequence index consists of a flight index with a
horizon index appended (see Table III). For g > 0, the

horizon index is the letter h; for g ¼ 0, the index is 0; and for
g < 0, the index is the number of transhorizon states, that is,
i ¼ 1 states. In one instance, the same sequence index, 3.2,
occurs in two series, and these cases are distinguished by a
subscript giving the launch index from Eqs. (12b) and 12(c).
Thus, 3.21 is the index for the escort-first inclusive sequence
with two transhorizon states, and having jðs ¼ 0Þ ¼ 1. Note
that the sequence type, e.g., sequence 3, simply identifies a
sequence by flight index.

Escorts beyond the horizon also entail a second type of
concurrent transition due to boundary cases. For g < 0,
dq=ds changes sign at s ¼ 0 and s ¼ sav, and an escort tran-
sition j! j0 just before one of these inflection points will
quickly be succeeded by j0 ! j. In the limit that the transi-
tion occurs at the point, the j0 state will be transient, but
again remains part of the series. For example, the state w12 is
retained at s ¼ 0 for qð0Þ ¼ kþ sbv, though immediately
q < kþ sbv again and w12 ! w11.

Sequences 2, 4, and 5 admit only g > 0, and the indexes
are simply 2.h, 4.h, and 5.h. In sequence 2, for example,
g ¼ g1, and g1 � 0, which would require g0 � 0 also, is dis-

allowed because d > 0 implies kj j < tbv. That is, g0 � 0 in

the overlapped flight constraint d0 < tav ! ck < bvðg0 � xbÞ
results in ðck=bvÞ2 > ðg0 � xbÞ2, and from Eq. (12b),

ðck=bvÞ2 > x2
b þ ðckÞ

2
, which is incompatible with kj j � tbv.

Sequence 3 draws from both Eqs. (12c) and (12b). For

sequence 1, g ¼ g2, and from Eq. (12c), d0 � tav ¼ ½cdð1=
bv � bvÞ � g2�av=c. However, sequence 1 requires d0 < tav,

and for negative g2 of sufficient magnitude, d0 ! tav and the

flight index becomes 3. From Eq. (14c), d0 > tav is here
equivalent to s11;12 < sav, and j ¼ 2! 1 occurs at ship rest

in an ŜðuÞ frame. Since av > cv � 1, direct comparison of
Eq. (14b) with Eq. (13b) shows that in these conditions,
s11;12 < s10;11, and escort launch, also, occurs at t̂ ¼ tau in an

ŜðuÞ frame if s10;11 < sav, which from Eq. (13c) requires

k0 > tav. Another interesting combination is d ¼ 0 and
g2 ¼ 0, for which all values of bu satisfy Eq. (14a), and
escort docking occurs throughout ship acceleration. For the
jðs ¼ 0Þ ¼ 1 launch index, the situation is similar to the
j ¼ 2 case, and the transition j ¼ 1! 0 is possible during

Fig. 3. Spacetime diagrams for a flight with the escort beyond the Rindler horizon of the ship. In (a) the frame is ŜðuÞ for u ¼ 0:3c, and in (b), u ¼ 0:6c.

Events A and B are the ship rest events in the two frames, and C and D the corresponding escort events, which occur in opposite order to the ship events. In

(a), the ship rest event A for that frame occurs after D, the escort event simultaneous with B in the faster frame (0.6), and in (b), the ship rest event B occurs

before C, the escort event simultaneous with A in the slower frame (0.3). The solid horizontal lines mark the ship acceleration window, and the dashed lines

the escort acceleration window. Further details of this spaceflight are given in Sec. V A.
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the ship acceleration. Sequence 6 is much like sequence 1,
though simpler.

The state series and the flight sequences are given in Table
III, defined in terms of the input parameters. Six of the series
have five states each and are labeled 1–6, matching the flight
index for the series. The three series with decreasing j transi-
tions are essentially combinations of the others and are given
hyphenated labels. This arrangement groups two of the
sequence 3 cases with sequence 1, but it preserves the order of
the state indexes and groups the launch indexes symmetrically.

The series labels in the table are followed by the indexes ij
of each state wij in the series. The transition from one state to
the next occurs at the transition time identified by indexes
from the two states. These times are given in Table IV,
incorporating Eqs. (13b) and (14b). The sequence indexes
are given in the last column of Table III, including three
sequences each for series 1, 3, and 6, dividing them by hori-
zon index, for a total of 15 sequence indexes. For clarity, an
explicit classification tree for the state series is given sepa-
rately in Table V. It is perhaps worth stressing that this clas-
sification applies only to the ship frame R. Inertial frames all
have positive g sequences, and for a given flight, the index
can vary with frame velocity.

D. Flight constraints

In Sec. V, examples of solutions for object arrays are
given incorporating flight constraints, particularly on final

conditions. Born rigidity is the prototype constraint, fixing
spatial separations for point objects throughout a flight.
Similarly, the final difference in position, and the net
increase in age, of independent escorts relative to the ship
form key metrics that are straightforward to determine, and
likewise to constrain.

From the w11 equations of Table II, for k ¼ 0 the time var-
iable t̂ vanishes for all u if

xb ¼ g0: (15)

This is the Born rigidity condition, and it results in n ¼ d
and b ¼ 0 for all s. In the same vein, xb ¼ g0=2 gives b ¼ bu
for all d. Both of these cases have q ¼ sg0=xa. As an inter-
esting aside, linear qðsÞ in w11 is also possible for general k
with the constraint ðg0=xb � 1Þ2 ¼ ðk=tbÞ2 þ 1, which gives
q ¼ sð161Þtb=ta þ k� tb arsinhðk=tbÞ, where the upper sign
is for g0 > xb.

In the general case, the separation between the ship and
the escort at the end of a flight sequence is

n½22� ¼ cvd � avkc� xb � xað Þ cv � 1ð Þ; (16a)

where n½22� denotes nðsÞ in w22, which is constant. The differ-
ence in elapsed proper times is

Table IV. System state transition times, where j ¼ 0; 1; 2.

transition state indexes time sij;i0j0

0 j, 1 j 0

1 j, 2 j sav

00, 01 k
01, 02 d
10, 11 ta artanhðck=g0Þ
11, 12 ta artanhfcd=½g0 þ xbðcv � 1Þ�g
20, 21 sav þ k0 � tav

21, 22 sav þ d0 � tav

Table III. State series and flight sequence definitions from input parameters. The state series labels are followed by the indexes, in order, for the states in that

series. The transition time for each adjacent pair of states is given in Table IV. Table V summarizes the classification structure for the series. The flight index

is defined in Fig. 2, and the state series are numbered by flight index, except where decreasing j transitions occur (see the text).

Flight index k d k0 � tav d0 � tav State series Indexes ij of the series states wij g launch index Sequence index

1 < 0 � 0 < 0 � 0 1 00 01 02 12 22 g2 > 0 1.h

g2 ¼ 0 1.0

< 0 g2 < 0 1.1

3 � 0 � 0 > 0 1-5 00 01 02 12 11 21 22 3.22

> 0 1-6 00 01 02 12 11 10 20 21 22 3.3

2 > 0 < 0 < 0 2 00 01 11 12 22 g1 > 0 2.h

3 � 0 � 0 3 00 01 11 21 22 3.h

� 0 > 0 g1 ¼ 0 3.0

< 0 g1 < 0 3.1

� 0 > 0 3-6 00 01 11 10 20 21 22 3.21

4 � 0 < 0 � 0 4 00 10 11 12 22 g0 > 0 4.h

5 > 0 > 0 5 00 10 11 21 22 5.h

6 � 0 6 00 10 20 21 22 6.h

g0 ¼ 0 6.0

g0 < 0 6.1

Table V. Classification tree for state series (cf. Table III).

Parameter constraints State series

d � 0 d0 � tav 1

d0 > tav k0 � tav 1-5

k0 > tav 1-6

d > 0 k � 0 k 6¼ 0 or

d0 � tav

k0 � tav d0 < tav 2

d0 � tav 3

k0 > tav 3-6

k ¼ 0 and d0 < tav 4

k > 0 k0 < tav d0 � tav

d0 > tav 5

k0 � tav 6

264 Am. J. Phys., Vol. 92, No. 4, April 2024 Chris Dobson 264



q½22� � s½22� ¼ avd=c� cv � 1ð Þk� tb � tað Þ av � lvð Þ;
(16b)

where again the subscripts denote values in w22, and this is
also constant, though of course qðsÞ and s are not. Equations
(16a) and (16b) are from the w22 equations in Table II and
apply to all sequences. They specify final conditions, but
may also be used in reverse, to determine input parameters
for equal, or otherwise set, docking positions or elapsed
times.

For equal accelerations, the condition for equal elapsed
times, from Eq. (16b), is independent of acceleration, and
the final separation is d0 ¼ cvd � a2

vd=ðcv � 1Þ ¼ �d. In
fact, both Eqs. (16a) and (16b) are independent of accelera-
tion rates both for equal accelerations and for the Born accel-
erations of Eq. (15).

There are three independent escort parameters in Eqs.
(16a) and (16b), b, k; and d, and only two are required to fix
docking positions and elapsed times simultaneously. The
launch coordinates are particularly flexible since they can
take on any values, whereas the accelerations must be posi-
tive. There are limitations, however. In the important case of
zero difference, n½22�, q½22� � s½22� ¼ 0, substitution of Eqs.
(16a) and (16b) into Eqs. (12a)–(12c) shows that g > 0 is
required, and the escorts must remain within the Rindler
horizon. These constraints are illustrated in Sec. V B.

V. RESULTS AND DISCUSSION

The solution to the acceleration problem then is deter-
mined. Given a set of input parameters, Table V specifies the
state series, with the states of each series listed in Table III,
which also gives the sequence index. An accompanying list
of transition times for the series, one time for each pair of
successive states, is given by Table IV. The state of the sys-
tem, then, for any particular value of s is identified by the
transition times, and the escort variables nðsÞ, b sð Þ; and qðsÞ
for that state are calculated from Table II. The start time for
the problem is the smaller of k and zero, and the end time is
the larger of sav and s21;22. For additional escorts, the proce-
dure is the same. Each escort has its own set of parameters,
b, d; and k, with the final velocity v and the ship acceleration
a common to all. Solutions for alternate choices of host in
turn require only offsets to the launch coordinates, as illus-
trated at the end of Sec. V B.

Section V A surveys the nine state series for the two-
object problem, giving solutions for representative examples,
and Sec. V B demonstrates practical application of the gen-
eral solution for object arrays. The array problems include
acceleration both of integral rods and of independent objects,
and illustrate constraints from Sec. IV D.

In all cases, it is the position nðsÞ, velocity b sð Þ; and
proper time qðsÞ of the companion object(s) in the noniner-
tial rest frame of the host, R, that are central, and the host
proper time s is the independent variable. The results of the
calculations are plotted with s on the horizontal axis, and n,
b; and q on the vertical axes. For convenience and general-
ity, the graphs are presented in a dimensionless format.

The acceleration problem can be nondimensionalized
by normalization, dividing Eq. (4b) by xa, Eq. (4c) by ta,
and Eq. (4a) by c, in the equations for both craft and the
forms for all frames (S, Ŝ, and S0). The input parameters
are reduced in number to bv, a=b, d=xa; and k=ta. The

normalized solution then gives n=xa, q=ta, and b as functions
of s=ta. The dimensionless version of Table II (n! n=xa,
etc.) is unchanged in appearance except that a and c are
absent.

The normalized solution is obtained here from the unnor-
malized equations by choosing units with cj j ¼ 1 and setting
aj j ¼ 1. The normalized solution may then be applied to

arbitrary accelerations a in any system of units. In the
graphs, the dimensionless variables are denoted with colored
symbols, n ðblueÞ ¼ n=xa, b ðgreenÞ, q ðredÞ ¼ q=ta; and
s ðbrownÞ ¼ s=ta, blue, green, red, and brown, and the plot-
ted curves are likewise color-coded. In the text, quantities
are dimensioned.

For the spacecraft, the values ta ¼ 1 (Julian) year (y) and
xa ¼ 1 light-year (ly) lead to the unit of acceleration, 1 ly/y/
y, which is defined as a standard value

aG ¼ 9:500 m s�2; (17a)

approximately equal to 1 g ¼ 9:807 m s�2. A second, far
larger, acceleration

aH ¼ 9:461	 1015 aG; (17b)

is defined for which xa ¼ 1 m and ta ¼ 3:336 ns. A standard
velocity of v0 ¼

ffiffiffi
3
p

=2 c ¼ 2:596	 108 m s�1 is used for all
the solutions (cv0

¼ 2). Although the inertial frames S, S0;
and ŜðuÞ are discussed at various points in this section, the
graphs are confined to the variables in the noninertial
frame R.

A. State series

In this subsection, we survey the spectrum of acceleration
cases for two objects, the ship and its escort. Figures 4–6
give examples of the nine state series, three series per graph.
The cases in a single graph are chosen to have non-
intersecting nðsÞ curves for clarity. The qðsÞ plots start
together, increasing diagonally, and the bðsÞ curves, referred
to the right axis, begin and end at zero. The shaded area is
the ship acceleration region, flanked by the dark vertical
lines marking ship launch and docking. The other vertical

Fig. 4. State series 1, 1-5, and 2 examples with b ¼ a. Sequence 1.h, solid

lines; 3.22, short dashes; 2.h, long dashes. d is always the initial value of n.

k < 0 can be read from the s axis (launch transitions).
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lines are escort transition times. Also, small time segments
are included at either end, before the first launch and after
the last docking. For a ¼ aG, these graphs may be read as
having units y (s; q) and ly (n).

In Fig. 4, the escort launches first. For series 1 (seq. 1.h)
and series 2 (seq. 2.h), the flights are, respectively, separate
and overlapped in the ship frame R, and also in the terminal
frames, S and S0 (not shown). For the transhorizon case, the
spaceflight in S is series 1 and in S0 it is series 5, while in R,
it is series 1-5, a hybrid comprised of the first four states of
series 1 and the last three of series 5 (Table III). The escort
docks at s ¼ �0:77 ta, but if the ship launches on schedule at
s ¼ 0, the escort docking will not be observed by the ship
before launch and will be unobservable during acceleration.
At s ¼ 1:02 ta, the ship is momentarily at rest in
Ŝðu ¼ 0:77 cÞ, and in this frame the escort is docking at that
instant. This is the second of the two escort transition times
shown in the ship window of the graph. The ship then docks
at s ¼ sav, and escort docking in S0 occurs afterward (at
s ¼ 1:51 ta), in accordance with the series 5 order.

Sequence 1.h in Fig. 4 shows another interesting feature of
acceleration. Just before ship launch the escort is at rest in S0,

with constant velocity v away from the ship, and n is increas-
ing linearly. When the ship launches, the velocity of the
escort begins to decrease as the ship accelerates toward it,
but the distance between the two craft, rather than slowing
its rate of increase, actually does the opposite. That is, dn=ds
increases.

The escorts in Fig. 5, as in Fig. 4, have negative launch
times, and in this group all three flights are inclusive. Series
3 (seq. 3.h) is straightforward, and interesting in that the
escort docks before the ship in S and launches after it in S0,
so that those sequences are 2.h and 5.h. It is from this series
3 case that the two ŜðuÞ diagrams in Fig. 1 are taken. The
other two flights in Fig. 5 have g < 0, and both have decreas-
ing j transitions, series 3-6 (seq. 3.21) with one and series 1-6
(seq. 3.3) with two. Due to the combination of launch coordi-
nates, two of these three transitions actually occur at the
same time, at s10;11 ¼ 0:97 ta. However, the j ¼ 0! 1 tran-
sitions outside the ship window, at s00;01 and s20;21, are dis-
tinct for the two flights. Sequence 3.3, series 1–6, is unique
in that it includes all nine states. It is essentially a merger of
series 1 and 6, and these are the series for the flight in S and
S0, which, thus, have separate acceleration windows in oppo-
site order. The ŜðuÞ diagrams of Fig. 2 are taken from this
flight. Note that all of the g < 0 cases in Figs. 4 and 5 illus-
trate the general result, described in Sec. IV, that each trans-
horizon transition is echoed both before and after the ship
acceleration window, with the value of q (either k or kþ sbv)
common to all three transitions.

The series in Fig. 6 are ship-first launch order. The sepa-
rate flight case, sequence 6.0, is chosen to have g ¼ 0. The
4.h sequence is notable for the brevity of the escort accelera-
tion (s ¼ 0:26–0:44 ta). This is due in part to the higher
acceleration rate of the escort and in part to its forward
placement. Large d tends to make the escort transition times
in the ship window similar (Table IV).

As an example of units application, when the 4.h escort in
Fig. 6 docks at s ¼ 0:44 ta, the escort variables have values
n ¼ 3:095 xa, q ¼ 1:658 ta; and b ¼ 0:704. In SI units for
a ¼ g=2, ta ¼ 6:114	 107 s and xa ¼ 1:833	 1016 m, so
that the distance of the escort to the ship is n ¼ 5:673	
1016 m and the escort clock reads q ¼ 1:014	 108 s.

B. Object arrays

The spaceflight of the ship and its escort is easily extended
to multiple escorts, and the kinematics apply on any scale.
The three escort flights in Fig. 4, for example, are presented
separately, but the three could accompany the same ship on a
single mission. Moreover, the calculations of the graph apply
to arbitrary time (or distance) scales. If a ¼ aH, for example,
the companion objects have initial positions at one-half
meter, 1 m, and 3 m behind the host object and begin their
accelerations, respectively, at s ¼ 6.67, 4.17, and 8.34 ns
before the host.

This subsection presents examples of object arrays.
Solutions for the accelerations of elastic and rigid rods, in
which the objects represent points along the integral struc-
ture of the rod, are treated in detail (Figs. 7 and 8). As dis-
cussed in Sec. IV D, the acceleration constraint for a rigid
rod, Eq. (15), has analogs in the constraint of arrival posi-
tions and elapsed proper times for independent objects, given
by Eqs. (16a) and (16b). Based on these equations, an exam-
ple is given of acceleration rates used to prescribe equal
aging (Fig. 9), followed by several examples constraining

Fig. 5. State series 3, 3-6, and 1-6 examples with b ¼ 2a. Sequence 3.h,

short dashes; 3.21, long dashes; 3.3, solid lines.

Fig. 6. State series 4, 5, and 6 examples with b ¼ 2a. Sequence 4.h, solid

lines, k ¼ ta; 5.h, long dashes, k ¼ 2ta; 6.0, and short dashes, k ¼ ta=4.

266 Am. J. Phys., Vol. 92, No. 4, April 2024 Chris Dobson 266



proper times and final positions by choice of launch coordi-
nates (Figs. 10–12).

The index m is used for an array of objects. The accelera-
tion and launch coordinates are bm, dm; and km, and the
objects are indexed from front to back, in order of decreasing
dm. The object variables are nm, bm; and qm. The host is
denoted by m�. Thus, a ¼ bm� , dm� ¼ km� ¼ nm� ¼ bm� ¼ 0,
and s ¼ qm� is the independent variable of the problem.

Figure 7 shows eight companion objects with simulta-
neous launches, equal accelerations and evenly spaced
launch points dm in either direction from the host object. The
sequences are 4.h for the leading companions and 3.h for the
trailing companions. The object indexes are m ¼ 1–9 with
m� ¼ 5.

For a ¼ aG, d1 � d9 is 1 ly, and Fig. 7 is appropriate to a
spacecraft train. The trip time aboard the ship is
sav ¼ 1.317 y, while the escort trip times range from
s ¼ 0.8534 y for the lead escort to 2.183 y for the trailing
escort. However, although the lead escorts arrive early, inFig. 8. Acceleration of a rigid rod (or other array). Case of Fig. 7 but with

accelerations set by the Born rigidity condition, Eq. (15).

Fig. 9. Accelerations bm set to equalize elapsed proper times for all objects.

Even spacing, km ¼ 0, bm ¼ 0.55, 0.62, 0.71, 0.83, 1.26, 1.72, 2.67, and

6.04 a.

Fig. 10. Launch times set to equalize elapsed proper times for objects span-

ning the Rindler horizon, sequences 6.h, 6.0, 6.1, and 3.3. bm ¼ 2, 1.5, 1, and

2 a, km ¼ 3.7, 2.8, 0.89, and �1.5 ta.

Fig. 7. Evenly spaced point objects with equal start times and accelerations,

a train of spacecraft (large xa), or an elastic rod (small xa).

Fig. 11. Companion accelerations from Fig. 8 with launch coordinates cho-

sen such that the docking positions and elapsed proper times of the compan-

ions match those of the host (m� ¼ 5). The object index of companion 8 is

m ¼ 9.
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the end they age more. The onboard trip time for each escort
is of course the same as that for the ship, sbmv ¼ sav, but the
leading escorts age at rest in S0 waiting for the trailing escorts
to arrive. The result is that, for s � 2.183 y, when dq=ds ¼ 1
again for all escorts, the lead escort has aged 3.049 y and the
last escort 1.317 y. The difference is, by Eq. (16b),
avðd1 � d9Þ=c ¼ 1.732 y. The acceleration distance in S or S0

(not shown) is the same for all craft, 6xaðcv � 1Þ
�� �� ¼ xa ¼ 1

ly, and the acceleration time is tav ¼ 1.732 y, which, in this
case, is the same as the age differential since d1 � d9 ¼ xa.

For a ¼ aH , d1 � d9 is 1 m, and the Fig. 7 data become a
solution for evenly spaced points on an accelerating elastic rod.
The elapsed proper time for the midpoint of the rod (the host
point) is 4.393 ns, and in the frame of that point, the trip times
for the leading and trailing tips of the rod are 2.847 and
7.282 ns, respectively. When the last of the rod comes to rest in
S0, it has aged 4.393 ns, as compared to 10.17 ns for the leading
edge. The acceleration distance and time in the terminal inertial
frames are, respectively xa ¼ 1 m and tav ¼ 5.778 ns. Again, this
is true for all points, though in S0 the different parts of the rod
launch (and dock) at different times. Also note that, whatever
the scale, the separation of the objects increases in S0 by a factor
of cv ¼ 2, from Eq. (16a).

For a rigid rod, if the point objects are to maintain their
separations, acceleration must conform to Eq. (15), applica-
ble within the Rindler horizon (g0 > 0). Figure 8 gives
results for the launch coordinates of Fig. 7 (g0 � xa=2) with
the Born accelerations bm ¼ a=ð1þ dm=xaÞ. All points of the
rigid rod are stationary in R and come to rest in S0 at the
same time, but the elapsed proper time is again greater for
the leading edge. If the acceleration of the midpoint is
a ¼ aH, the leading edge ages 6.589 ns and the trailing edge
2.196 ns, for a difference of 4.393 ns. For the case a ¼ aG,
sav ¼ 1.317 y would be the age difference between leading
and trailing escorts. In S or S0, the acceleration distance and
time for the midpoint, or ship, are the same as for the elastic
case.

As described earlier, the final spacing and differential
aging for bm ¼ a and for Eq. (15) do not depend on the rate
of acceleration, but only on velocity. Thus, both the elastic
and rigid rod problems have the same n½22� and q½22� � s½22�
results from Eqs. (16a) and (16b) for accelerations more

tenable than aH. With a ¼ 107aG, for example, a railgun
value,14 the acceleration period in the launch frame is 5.5 s,
albeit with a travel distance of 
106 km.

For any configuration of array objects, once the accelera-
tions have been completed, the differences in position and
proper time between the companions and the host are given
by Eqs. (16a) and (16b). Of particular interest are zero-
difference constraints, in which final positions or times are
the same for the companions and the host.

For example, from Eq. (16b) with k ¼ 0, the accelerations
required to match the elapsed proper times of companions to
that of the host are xbm

¼ xa þ dm=ð1� lv=avÞ. This imposes
a lower limit on the launch positions, requiring
g0 > xalv=av, where lv=av ffi 0.76 for v ¼ v0. For even spac-
ing about a central host as in Fig. 7, the minimum dm is
accordingly set to �0:2 xa, and Fig. 9 gives the resulting tra-
jectories. The companions reverse their positions, fore and
aft, as with the equal acceleration case described in Sec.
IV D (d0 ¼ �d), while their proper times never diverge very
far from the host time. Note that the accelerations range over
an order of magnitude.

Launch coordinates may also be used to impose constraints
from Eqs. (16a) and (16b), and generally provide greater latitude
than accelerations. From Sec. IV D, zero-difference requires
companions inside the Rindler horizon, but if the host itself is
excluded from the constraint, it is possible to arrange, for exam-
ple, equal aging among companions on opposite sides of the
horizon. This is illustrated in Fig. 10. The sequences are 6.h,
6.0, 6.1, and 3.3, with m� ¼ 1. Parameters b5; d5; k5 are set for
sequence 3.3, and for 1 < m < 5, the bm are set to a mix of val-
ues, the dm for g0, and the km to match the m ¼ 5 value of
q½22� � s½22� from Eq. (16b). The forward companion (6.h)
launches last, and also docks last, at q2 ¼ 4:355 ta. This value
q2 ¼ qm is then the proper time of all companions at that host
time, which is s ¼ 2qm.

In Fig. 11, launch coordinates are chosen to equalize both
elapsed times and final positions for all objects, resulting in
g > 0 for all companions. The Born accelerations bm of Fig.
8 are used, as an example, with km, dm determined by Eqs.
(16a) and (16b) to achieve d0m þ xbm

ð1� cvÞ ¼ xað1� cvÞ
and qmðs > s9Þ ¼ s for all m, where s9 ¼ 1:525 ta is the last
docking time. The onboard clocks of all objects remain very
nearly synchronized for the duration of the flight. The trail-
ing companions launch early and overtake the host, and the
lead companions launch late and are overtaken, thus revers-
ing the spatial order of companions before they converge on
the host at the end.

Given a solution in the rest frame of object m�, the corre-
sponding solution in the rest frame of object m ¼ n is
obtained by shifting the launch coordinates. The new param-
eters, denoted with a ~, are given by

~bm ¼ bm; (18a)

~dm ¼ dm � dn; (18b)

~km ¼ km � kn (18c)

for all m, and

~m� ¼ n: (18d)

As an example, Fig. 12 gives the case of Fig. 11 in the
rest frame of the trailing companion, n ¼ 9 in Eq. (18).

Fig. 12. Case of Fig. 11 in the rest frame of companion 8 there (m ¼ 9).

Companion 8 here is the former companion 7, and companion 5 here is the

former host. Here m� ¼ 9.
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This object was actually the lead companion in Fig. 8, with
the smallest acceleration, b1 ¼ 2a=3, but in Fig. 11, it has
the minimum d, and it becomes the host in Fig. 12. If a ¼ aG

in Figs. 7, 8, and 11, then a ¼ 2aG=3 in Fig. 12. The com-
panions of Fig. 12 all have launch positions in front of the
host, and their trajectories follow the pattern of the leading
companions in Fig. 11.

One further point warrants mention. In applying the results
for point objects to extended bodies like spacecraft, having
finite proper length ‘, we specifically require ‘� xa and
assume that ‘ is constant, with the body acceleration satisfy-
ing the Born rigidity condition. The variation in force acting
along the body is in this case a tiny fraction of the propulsive
force. That is, taking a and b in Eq. (15) to be the accelera-
tions at either end of the body, d ! ‘� xa implies
Da ¼ a� b� a. For example, if a ¼ 1 g and ‘ ¼ 1 km,
Da=a ffi 10�13. Note though that Da, however small, is nec-
essary for fixed proper length and uniform acceleration has
‘! cv‘ at rest in S0 (cf. Figs. 7 and 8).

C. Concluding remarks

Formulas for the position, velocity, and proper time of the
objects in an accelerating array for the noninertial rest frame
of an arbitrary host object in the array have been derived and
illustrated. The general solution to this problem is based on
nine series of two-object states, with each state, of which
there are also nine, defined by acceleration statuses. In a
given problem, one of the nine series applies to each com-
panion object, and the object’s motion in each state is deter-
mined by a simple set of equations. The resulting behavior
of the companions in the host frame is dominated by the flu-
idity of event coordinates in inertial frames of differing
velocity, and the most striking examples are of companions
beyond the Rindler horizon of the host, for which time runs
backward in the host frame, in the sense that the host
remotely revisits successively earlier companion events as
the host progresses forward in time.

Among the important examples of accelerated object
arrays are accelerations of rigid and elastic rods. With inflex-
ible spatial order, the elapsed proper time, or aging, is greater
for leading objects than for trailing objects. For independent
objects, by analogy with the differential acceleration
required to support rigidity, given by the Born condition, dif-
ferential acceleration or—better—variable launch coordi-
nates may be used to ensure equal aging, or common
destinations, or both.

All array solutions are built on the pair problem of Secs.
II–IV, and the two-object examples given above to illustrate
the state series, thus, underpin the whole of this section. We
close with a thought experiment in which a spaceflight of the
ship and its escort are visualized from photos made by inde-
pendent observers during the flight. An observer is stationed
in selected instantaneous rest frames at the rest position of
the ship (but at a distance along the ŷ axis) to take a snapshot
of the ship at the moment of rest. A second observer in each
frame is located at the (x̂) position the escort will occupy at
that moment, to take a snapshot of it. The photos record the
time of the clocks aboard the craft, the firing of their engines,

and for the escort, the length contraction due to its speed.
After the flight, the snapshots from all observers are com-
piled to make a video in which the spacing between the
images of the two craft is proportional to, but much smaller
than, the actual distance between the spaceships, and the
video frame rate can likewise be adjusted. In this way, a real-
istic sense of the flight from a bystander’s viewpoint is con-
veyed with the times and distances scaled to human terms.
Animations simulating such a scheme for the examples of
Sec. V A have been constructed.15
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