
The Twin Paradox

1, Introduction

Two twins, Art and Beth, have an adventure. One day, Beth takes off in a spaceship and flies at 
great speed for a long time. Eventually she turns around and flies home at the same speed, only to find 
Art has aged much more than she. Such curious facts are often summed up with the catch-phrase, 
“moving clocks go slow.” But things are still more curious when you consider that motion is relative.

If Beth flies by Art in her ship, he will see her clock tick slowly. The watch on his wrist shows it
took 2 seconds for her to travel from one place to another, but he can see that the clock on her ship only
moved forward 1 second during this travel. From Beth’s perspective, she is just sitting in her ship and 
Art is flying by her. And she can see that Art’s watch is ticking slowly compared to her clock, 
measuring off only half a second as her clock moves a full second.

This is so-called the twin paradox. How can Beth’s clock move slower than Art’s and yet Art’s 
clock move slower than Beth’s? Beth’s trip to a great distance and back again is the traditional way to 
highlight the problem. If both have slow clocks, that is, age slowly, which twin is younger when Beth 
comes home?

We already mentioned that it is Beth who is younger, and the reason for that we will come to 
presently. But there is a key part of the paradox which doesn’t require a round trip. It is contained in a 
simple flyby. How can Beth’s clock move slower then Art’s and yet Art’s move slower than Beth’s?

The answer is that both happen because the clocks are moving not just in space but also in time,
so that moving clocks at different places exist in different times.

2. Relative motion

To see how this works, let’s look at a simple flyby step by step, as Beth flies her ship at great 
speed from west to east past Art on the Earth. To make the details clear, we are going to add some 
clocks. Art has positioned space stations at equal intervals both to the east and to the west of the Earth, 
and labeled them E1, E2, and W1, W2, and so on. The stations are all motionless with respect to the 
Earth, and each has its own clock, which keeps accurate Earth time.

Similarly, Beth has deployed a series of drones at equal intervals behind and in front of her ship.
Since she is flying from west to east, these drones are west and east of the ship and labeled like the 
stations, E1, E2, W1, etc. All the drones are moving at the same speed as the ship, and their clocks keep
accurate ship time. The interval between drones is exactly the same as the interval between stations. 
Both Beth and Art will keep a careful record of the time showing on their clocks at each step of the 
flyby.

For the moment we will ignore how Beth came to be traveling at great speed by the Earth. For 
our purposes she (or at least her ship) can have been moving at this speed forever. Also, it doesn’t 
matter if Art and Beth are different ages. We are only interested in how they age during the flyby.
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As Beth passes Art on the Earth, both siblings mark the time on their clocks exactly, and each 
will use this time as a reference point, subtracting it from all of their recorded times. This way, both 
Art’s and Beth’s clocks will officially be at zero time the one instant the two are in the same place.

In Figure 1 are five pictures which show the flyby from Art’s point of view. The times on his 
clock are -1, -0.5, 0, +0.5 and +1 second, respectively. The upper half of each picture is Beth in her 
ship, along with her drones. Art and the two nearest of his stations are shown in the lower half of each 
picture. Red labels are used for drones and blue for stations.

Figure 2 gives five pictures from Beth’s point of view. She and her drones watch as Art and his 
stations fly by her moving east to west. The same sequence of times is used for the ship clock, -1, -0.5, 
0, +0.5 and +1 second. Again Beth is in the upper part of each picture, with her drones, and Art in the 
lower, with his stations.

In Figure 1, then, one thing that is immediately obvious is that all the moving clocks are 
shortened, as indeed are the distances. In fact the distances have been cut in half. For example, the 
distance from the ship to drone E1 is normally (no relative motion) the same as the distance from Art to
station E1, but as Art can plainly see this is no longer so. It is also clear that the ship clock is moving 
slowly. From the top picture to the bottom, two seconds pass for Art, but only one for Beth. The ship 
clock in particular goes from -0.5 to +0.5 seconds, which is 1 second elapsed. And although all the 
drone clocks likewise increase by 1 second, it is a curious fact that at any one time on Art’s clock, the 
drone clocks all read differently.

In Figure 2, the situation is completely analogous to that of Figure 1. Beth sees the moving 
clocks on the Earth and the stations are all shortened and ticking slowly. Again both distances and times
are cut in half.

As far as it goes, then, this creates a satisfying picture. Everything is symmetric. Motion is 
purely relative, and either observer can witness time dilation and length contraction in the other’s 
clocks. But something seems to be off. For example, in the top picture of Figure 1, Beth’s clock reads 
-0.5 while Art’s clock reads -1. Yet in the second picture of Figure 2, Beth’s clock also reads -0.5, while
Art’s clock says not -1, but -0.25.

This is because the two pictures are seen from different frames, and because Beth and Art are in 
different places. Only when things are in the same place are the times always unchanged. In this 
example, Beth’s clock is -0.5 when she is at Station W1 and that clock reads -1, and this true in both 
Figure 1 (top picture) and Figure 2 (2nd picture), that is, from the perspective of either observer.

In fact, from the station clock where she is at any particular time T (her clock), she can tell what
time Art and the stations, from their point of view, will see her clock read T. For example, in Figure 2, 
picture 4, the station E1 clock tells Beth that Art and his stations will see her clock at 0.5 when they are 
at 1.0, as shown in the bottom  picture of Figure 1. From this we know, looking at the top picture of 
Figure 2, that Art’s clock, and the station clocks, were at -2 seconds (W2) when they saw Beth’s clock 
at -1, even though this is not shown explicitly in Figure 1.
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Figure 1. The flyby from Art’s point of view on Earth. See the text for details.
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Figure 2. The flyby from Beth’s point of view on the ship. See the text for details.
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The reason the moving clocks read differently is that they exist at different times. Events which 
are simultaneous to Art and occur a distance D apart occur (at the same positions) for Beth at different 
times, with a difference proportional to D. Events at the downstream location (Drone E2, say, compared
to E1) occur earlier for Beth. For example, if Beth flashes her laser pointer when her clock says 0.25, 
and 1.5 seconds later Drone W2 blinks a navigation light, Art will see these events happen at the same 
time, namely 0.5 on his clock (Figure 1, picture 4).

One other effect is worth noting. As long as either twin focuses on the other, each will see the 
other’s clock moving at half speed. On the other hand, if Art looks not at the ship clock, but at the 
drone clocks as they pass his position he will see the time advancing at double the speed of his clock. 
In Figure 1, the time on drone E2 is -2 in the top picture and the time on W2 is +2 in the bottom. While 
Art’s clock has moved forward 2 seconds, the “Beth” clocks at the Earth show an increase of 4 seconds.
The same is true for Beth looking out her porthole at the passing stations.

Another way to put it is that if you watch a fixed point in the moving system, you see time 
moving slow, but if you watch the moving system at a fixed point in your own, you see the time 
moving fast.

So this is the situation. As long as Beth keeps flying, as long as the relative motion continues, 
each twin will continue to see the other’s clock running at half speed, and each will continue to see the 
moving time “outside their window” running at double speed. This can go on indefinitely. As to which 
twin is younger, each twin sees the other as aging slowly, with the age difference increasing 
indefinitely.

However, if Beth stops, it is a different story. Let’s say that in the bottom picture of Figure 2, 
which is shown from Art’s perspective in Figure 3, she suddenly stops. She finds herself at Station E2, 
having aged 1 second since she passed Art. Art, by contrast, has aged 2 seconds, as evidenced by his 
clock. So Beth is younger, or more accurately, has aged less than Art, only half as much in fact. If it had
been not 1 second but, say, 1 decade, it would be much more dramatic, but the principle is exactly the 
same.

Figure 3. The ship at Station E2 (bottom picture of Figure 2) from Art’s perspective.

But now suppose, not that Beth stops, but rather that Art is suddenly moving at the same speed 
as Beth, starting when he is just even with drone W2. This point is shown in the bottom picture of 
Figure 1 and, from Beth’s perspective, in Figure 4. Art finds himself moving with drone W2, having 
aged 1 second to Beth’s 2, i.e., Art has aged only half as much as Beth. The reason is that it is he who 
has changed his speed, whereas in the case of Beth stopping, it is she. It is for this same reason that in 
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the classic round trip we talked about in the Introduction, it is the traveling twin who is the younger. In 
that case she changes her speed not just by stopping, but by actually reversing herself.

Figure 4. The Earth at drone W2 (bottom picture of Figure 1) from Beth’s perspective.

In closing, we need to be clear that in all of this when we say “see,” we are talking about when 
and where things happen as opposed to when they are actually observed. When we say, for example, 
that Art sees Beth’s clock reading 0.5 as she passes station E1 at 1 second on his clock, we are 
pretending that he will see things instantly, without any time lag due to the travel time of the light from 
E1 to Earth. In the real world, the light travel time is a complication, but as we will see in the next 
section, it does not affect the timing and placement of events as described here.

3. Life on the move

Before moving on to the round trip, let’s consider some of the practical implications of the 
“paradox” of the flyby, the mutually flagging clocks. First we should point out that by choosing a 
dilation/contraction ratio of 2 to 1, we have set Beth’s speed v  to 0.866 c, where c is the speed of light, 
and the separation of the stations/drones to 0.866 light-seconds (~260,000 km). In order to make it 
more interesting, let us now move the stations/drones out to much greater distances, say 26 light-days 
between each (~674 billion km). This choice results in 30 days travel time between stations or drones 
(as observed by Art or Beth, respectively).

On day 15 of Beth’s calendar, she passes station E1 and sends a message to Art, “Hey Art, day 
15, just passed E1.” This event, Beth at E1, happens on day 30 of Art’s calendar, but already on day 15 
he has passed drone W1, where he sent Beth a message, “Hey Beth, day 15, W1 just passed overhead.” 
At that time, Beth was half-way to E1.

Now Beth’s message has a travel time of 26 days, so Art gets the message on day 56. (Knowing 
the travel time, Art concludes that Beth’s calendar was 15 days behind his when she transmitted.) He 
sends back, “Hello, Beth, that’s great. Day 56 here and we copy your E1 milestone,” for at the same 
time he received her message, the light generally that left E1 when Beth passed also arrived, and he 
could see in his telescope that she had indeed made it to E1. By this time Beth has moved on another 
22.5 light-days, by Art’s measure.

As for Art’s message from W1, that catches up with Beth at a distance d  such that

0/ ( ) /d c d d v  , where 0d   13 light-days, Beth’s location when the message was sent. This comes 
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to d   97 light-days, so Beth is almost to Station E4 and the time on Art’s calendar is now day 112 ( = 
97/0.866).

Art’s reply to Beth’s E1 message then intercepts Beth at a distance d  such that

0/ ( ) /d c d d v  , where 0d   26 + 22.5 = 48.5 light-days, and this is d   362 light-days, right at 

Station E14. The time is day 418 on Art’s calendar, and day 209 on Beth’s.

From Beth’s perspective, she reaches E1 on day 15 when Earth is halfway between her and 
drone W1, 13 light-days behind her. She sends her message and it makes it to Earth when Earth is 97 
light-days from her, almost to W4. It is day 112 for her. Then she receives a message from Art 97 days 
later, on day 209, replying to her message and telling her he got it on day 56 of his calendar.

However, well before her E1 message gets to Art, on day 56, she receives his message from W1.
(Knowing the message travel time, she concludes that Art’s calendar was 15 days behind hers when he 
transmitted.) Like Art, she checks her telescope and sends back, “Copy that, Art, W1 at Earth.” This 
reply gets to Art on Beth’s day 418 as drone W14 passes by the Earth.

To recap from Art’s point of view, he sends a message to Beth on day 15 when W1 passes by. 
Beth reaches Station E1, 26 light-days away, on day 30. He receives her message from there on day 56 
and replies. Then on day 112 he gets her reply to his W1 message (sent on Beth’s day 56). His own 
reply (to the E1 missive) makes it to the ship on day 418, when Beth is 362 light-days away at station 
E14.

To recap from Beth’s point of view, Art has made it half-way to drone W1 on day 15 when she 
passes station E1, 13 light-days from Earth. She sends a message that gets to Art on day 112, when he 
is about 6 light-days short of W4, and long after she got his W1 message on day 56. She gets his E1 
reply on day 209, when Art is at W7, and her reply to Art’s W1 message arrives at the Earth on day 
418, as W14 passes overhead there.

Thus the lives of the mutually traveling twins are perfectly coherent, and the events for each are 
perfectly symmetric. The light travel-time is a complication for observation, but it meshes seamlessly 
with the narrative. Each twin steadfastly sees the other aging at half the rate of their own aging. *** 
needs a graphic***

4. The journey

Now we will consider Beth’s round trip from Earth to far away and back. To simplify the 
discussion, let us generalize the chain of stations into a coordinate axis. We will call the distance along 
the axis x  and locate the Earth, and Art, at 0x  . The time on the clocks keeping Earth time will be t . 
Similarly, we have a second coordinate axis labeled by x  for Beth and the drones. This axis will move 
east with Beth so that she is always at 0x  , and the time on the clocks will be t . As before 0t t   
at 0x x  , when Art and Beth are together at the start.

In thinking ahead about Beth’s return trip, we also define a third axis x , with a double-prime, 
or d-prime, which moves to the west at Beth’s speed v . Such coordinate systems are often called 
frames of reference, or just frames, and we will use S  for the Earth frame, S  for the eastbound frame 
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and S  for the westbound frame. As with the other two, we set 0x   and 0t   on Earth at the start, 
when the twins are together.

The relations among the coordinates in these three systems, called Lorentz transformations, are
( )x x vt    ( )x x vt   ( )x x vt  
( )t t vx    ( )t t vx   ( )t t vx  

Here we are using 2/v v c , and 21/ 1 ( / )v c    is the Lorentz factor, which gives the 

dilation/contraction ratio. (Because of the units we are using, v  will have always the same numerical 
value as v , and we have chosen 0v  , even for the westbound frame S .***

We are going to increase the speed of Beth’s ship to 0.96v c . This will enhance the effects of 

the speed and is handy because of the numerical coincidence that 
2

2 28
1 0.96

100
    
 

, so that now not 

only  100

28
   is rational, but 

96

100

v

c
  is also. (Formerly /v c  was 3 / 2 0.866 , and   of course was

2.)

This time we will account for Beth’s startup, but we are going to use infinite acceleration to do 
it. This un-physical idealization will be removed in the next section, where we will consider a gradual 
increase in speed. For now, we say that at 0t  , Beth’s ship suddenly begins traveling at 0.96v c  to 
the east.

Figure 5 shows a sequence of graphs for the journey from the perspective of Art on Earth. There
is a lot of information given, and key parts are marked with the colored vertical bars. Each of the five 
graphs (a) through (e) is a different time t  in the Earth frame S . Note that in the S  pictures, the green 
axis is just the x  axis at that particular time t . For the other frames positions and times are mixed so 
that the interpretation is less straightforward, but in each case the pair of numbers above and below an 
axis give the spacetime coordinates of a single event, shown vertically, in each of the three frames.

In Figure 5(a), at the start of the trip, we can imagine Beth in her ship jumping from S  to S , 
and thus taking up the speed v . Figure 5(b) then shows the situation when Art’s clock has reached the 
7-year mark. The ship is at x   6.72 light-years from Earth. The 0x   in S  denotes Beth’s position, 
as we said, and we see from t  that she has aged 1.96 years.

In the spirit of Section 2, a single graph from Beth’s perspective is given in Figure 6, for  t   7 
years. We see that from Beth’s point of view the Earth lies 6.72 light-years west of the ship, and she has
aged 7 years while Art has aged 1.96 years. 

Returning to Art, in Figure 5(c), 25 years have passed on Earth and only 7 years on the ship, 
which is now 24 light-years from home. At this point Beth decides to reverse her direction, and she 
instantly accelerates from v  to v . We can imagine her in her ship jumping now from S  to S , where
the x  coordinate is 171.4 light-years and the clock reads t   171.6 years. These large values are due 
to our choice 0x x    at 0t t   , which simplifies the math, and are not meaningful of themselves 
as far as the twins are concerned. Their significance is that x   171.4 light-years is the new tag to 
identify Beth’s position, and that  t   171.6 years marks, from S , Beth’s having aged 7 years.
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(a)

(b)

(c)

(d)

(e)
Figure 5. Frames of reference for the twins’ journey, all seen from Art’s perspective on Earth. Top to bottom, (a) to (e), five 
times t  in the Earth frame S  are shown along with the eastbound S   and the westbound S  . The position of Earth is 
marked in cyan, that of the ship in magenta, and the purple bar is when the two are together. The dots on the axes are spaced
at 10 light-year intervals.
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Figure 6. A graph from Beth’s perspective, showing the reciprocity of relative motion. Compare with Figure 5(b). The 

combined velocity for S   is 2 2

2
2 /(1 / )v v v c  , which is 0.99917 c.

Then in Figure 5(d), where Art is 43 years older, Beth has aged an additional 176.61  171.57 = 
5.04 years. Finally in 5(e), after aging another 1.96 years, Beth comes suddenly to a stop, hopping back
to S . She is 14 years older than when she left, and Art is 50 years older. Again, it is the change of 
speed, the change from one frame to another, which results in Beth, and not Art, having aged less. Art 
remains in S  throughout, while Beth moves from S  to S  to S  and back to S .

We note in closing that the Lorentz equations provide a handy rule for the time between moving
clocks. For a fixed time t  in S , for example, two moving clocks (in S ) a distance x  apart will show 
times differing by t v x   . What this amounts to is that if you observe two co-moving clocks at 
different places, the then time difference on the clocks is just the light travel time for the distance 
between them in the moving frame ( /x c ) multiplied by the relative velocity factor /v c .

In Figure 5(c), the ship and the Earth are separated by x  24 light-years, and the S  clocks 

differ by 
x v

c c


  

100
24 years

28
 0.96 82.3   years, as shown in the graph. Similarly, in Figure 1, 

bottom picture, the ship is 3/ 4  light-seconds from earth, /v c  is 3/ 4  and   is 2, so the time 
difference between the ship and drone W2 clocks is 2 3/ 4t      1.5 seconds. In all cases, the clock 
further upstream has the earlier time, and the clock further downstream the later.

5. The real journey

In order to determine the details of a realistic trip, we need to know how things behave when 
they are accelerating. The frames of reference that we have been using are inertial frames, meaning 
they only move with constant speed relative to each other (and in a straight line). We should also 
mention that by always starting things off with the clocks synchronized at the origin we are using these 
frames in what is called “standard configuration.” It is to such frames that the Lorentz transformations 
as given in Section 4 apply.

Now we know that an object stationary in S , like Beth, moves at a velocity v  in S . But what 
if the object is not stationary? Let us use u  instead of v  for the relative velocity of S  and S , and save

v  for 
dx

dt
, which is generally different from u  for moving objects. From the Lorentz equations for x  

and t , we see that 
/

/

dx dx dt

dt dt dt





 21 /

u v

uv c





, where 

dx
v

dt


 


 is the speed of the object in S . When
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0v  , as with Beth, then u v  as we would expect. In this case, we also get /dx dt u   and

/dt dt   , so that 2 2/ 1 /dx dt v v c   and 2 2/ 1 /dt dt v c  .

We can carry this another step and get 
dv

dt



 2

1

1 /

dv

uv c dt




 
 2 2 2(1 / )

u v u dv

uv c c dt

 
 

2 2

2 2

1 /

(1 / )

dv u c

dt uv c

 


 
. Dividing this by 

2

2 2

1 /

1 /

dt uv c

dt u c



 

 gives the acceleration /dv dt  of the object in S

in terms of its acceleration /dv dt   in S , but if we simply multiply it by dt  we get the relation 

between infinitesimal changes in velocity, 
2 2

2 2

1 /

(1 / )

u c
dv dv

uv c




, which is sufficient to our purposes. 

Again, if 0v  , then 2 2(1 / )dv dv u c  , or better, 2 2/(1 / )dv dv v c   .

Our interest here is in an object which moves in S  with a variable velocity ( )v t , always 
moving in the x  direction but changing speed with the time t . At any particular instant t , we place the 
object at the origin of an inertial frame S  moving with velocity ( )u v t  with respect to S . Its velocity
in S , v , is zero, but the object is subject to an acceleration   which results in an infinitesimal change

in velocity dv dt  . In S , this is 2 2/(1 / )dt dv v c    .

In the next instant, t dt , we will need a new inertial frame with velocity ( )v t dv . And then 

another, and so on. Over a finite stretch of time from 0t  to t  in S  (or 0t  to t  in S—for 0x  , t t ),

the velocity will change from 0v  to v , with  
0 0

2 2' /(1 ' / ) ( ') '
v

v
dv v c d




     . Here we have used   

instead of t  to signify that we are no longer dealing with a single inertial frame, but rather a 
continuous sequence of instantaneous frames (the tic mark ' indicates dummy variables for integration).

Applying the same reasoning to the x  and t  differentials from above gives us 0x x    
0

x

x
dx 

0

2 2' / 1 /d v v c



   and 0t t   

0

t

t
dt   

0

2 2'/ 1 /d v c



  . Note that in this formulation u  and

/v dx dt  are identical, since the object is at rest in each instantaneous frame S .

This quantity   is called the proper time of the object. It is the time kept by a clock moving 
with the object, and it determines how the object ages. In cases where the velocity is constant   is 
identical with a single t , as with Beth, for example. In the preceding section t  (and then later t ) was 
Beth’s proper time.

The acceleration function ( )   gives the acceleration that would be measured by an instrument 

traveling with the object, and the integral 
0

( ') 'd



    is a total (specific) impulse for the time interval. 

For our purposes a constant acceleration ( ) a    is fine, and for this case its integral is simply

0
0( ') ' ( )d a




      . 
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The x  and t  integrals may be evaluated from the v  integral, which is 
0

2 2'/(1 ' / )
v

v
dv v c 

0( ) ( )
atanh atanh

v v
c

c c

   
 

 0( )a    , where atanh is the inverse function for the hyperbolic tangent

tanh, satisfying tanh(atanh )z z . This gives 
( )v

c


 tanh ( )f  , with 0

0

( )
( ) ( ) atanh

a v
f

c c

     , 

so that  0x x   
0

2 2' / 1 /d v v c



   

0

2' tanh ( ') / 1 tanh ( ')d c f f



     

0

' sinh ( ')c d f



  

2
0( / )[cosh ( ) cosh ( )]c a f f   . Similarly, 0t t   

0

2' / 1 tanh ( ')d f



   

0

' cosh ( ')d f



  

0( / )[sinh ( ) sinh ( )]c a f f   .

This, then, gives us what we need to proceed with accelerations in our space flight. To simplify 
the notation, we make the following definitions (the first symbol is “nu”):

/a cn
0(1/ ) atanh[ ( ) / ]V v c  n 0C V    .

Then the equations for x , t  and v  are

0( ) ( / )[cosh ( ) cosh ]C Vx x c      n n n

0( ) (1/ )[sinh ( ) sinh ]C Vt t      n n n
( ) tanh ( )Cv c   n

These equations apply to conditions of acceleration, | | 0a  . As a matter of convention, let us at this 
point define 0a  . For acceleration in the negative x  direction, n  in these equations will be replaced 
with -n .

Beth’s journey this time will be the same as before, except that we will substitute acceleration 
segments for the instant jumps between frames. Thus there will be four acceleration segments and two 
steady velocity, or “cruise,” segments. The two cruise segments will be the same length and at the same
speed, though in opposite directions, and each of the acceleration segments will have the same 
acceleration and length, though here again oppositely directed in pairs. Also, we will not limit ourselves
to a single choice of cruising speed or duration, or of acceleration, but keep it general so that we may 
compare various choices. For 0.96v c  and very large acceleration a , we would expect to reproduce 
the results of Section 4.

We will go through the trip in detail, but we can already define two elapsed times, a  for an 

acceleration segment and b  for a cruise segment. These are both in ship times, and they will have 

counterparts for Earth time. Also, we will use number subscripts, 1 - 6, to mark the end of each 
segment; 3  for example is the time at the end of the first deceleration, when Beth will turn around. 

Note that 0  is a special case. It is an initial value, like V  and C , and will change from segment to 

segment. In practice, we will choose the acceleration a , the cruising speed bv  and the cruise duration

b , and everything else will follow.

We have set up our equations with   as the independent variable, and we will construct the 
journey from Beth’s perspective, setting the times by her clock. However, we will be able to quickly 
convert these times to Art’s frame using the ( )t   equation. Moreover, Beth’s position will be given in 
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Art’s frame by default (ideally she is always at zero in her own frame, but as we have seen already, this 
need not be the case).

The cruising speed is bv . This, given the acceleration a , fixes the duration of the acceleration 

segments to (1/ ) atanh ( / )a bv c  n . This follows for the first segment directly from the ( )v   

equation; since 0  and 0( )v   are both zero, so are V  and C . For the other acceleration segments, we 

know from the symmetry that they will take the same time, but we will check them anyway. At the end 
of the initial segment, the position of the ship is ( ) ( / ) (cosh 1)a ax c  n n , and the time on Earth is

( ) (1/ )sinha at   n n . Note that for bv , 21/ 1 tanh coshb a a      n n .

From Beth’s perspective, her clock reads a , and if there is a station nearby keeping Earth time, 

it will show ( )at  . The Earth is a distance ( ) /a bx x     west of the ship. The time she sees on Art’s 

clock is ( ) ( )a S at t v x    ( )[1 ( ) / ( )]a S a at v x t     ( )secha at   n  ( ) /a bt   .

We choose a cruise time of b , and this fixes the length of those segments to b bv   in Beth’s 

frame. For Art, the time elapsed from 1 a   to 1   is, from the Lorentz equations, ( ) ( )at t  

( )b bv x    ( )b a bv x     ( )b a    , where x  is Beth’s position. Similarly, ( ) ( )ax x  

( )b bx v    ( )b b ax v    ( )b b av    . Thus Beth’s time at the end of the eastbound cruise is

2 a b    . Art’s clock now reads 2( )t    ( )a b bt    , and his position for the ship is 2( )x  
( )a b b bx v   .

The initial conditions then for the eastbound deceleration are 0 2( )x x  , 0 2( )t t  , 0 2   and

0( ) bv v  ; then, since now the acceleration is negative, ( 1/ ) atanh( / )V bv c   n  a  , and

0C V     2 a b   . The final condition is 3( ) 0v    tanh ( )Cc    n , so 3 C   is the one-way 

trip time.

The ship’s position during this segment is ( )x    0x 

( / )[cosh( ( )) cosh( ( ))]C ac        n n n  2 3( ) ( / )[cosh ( ) cosh ]ax c      n n n .

The Earth time is 0( )t t    ( 1/ )[sinh( ( )) sinh( ( ))]C a       n n n  2( )t  

3(1/ )[sinh ( ) sinh ]a   n n n .

At the stop, 3( )x    2( )x    ( / ) (1 cosh )ac n n  2 ( )a b b bx v    , and 

3 2( ) ( )t t    (1/ ) sinh an n  2 ( )a b bt     .

Since Beth is turning around and heading back immediately, the eastbound deceleration leg 
actually continues into the westbound acceleration leg. Now we are looking for ( ) bv v    from the 

same initial conditions, that is 4 4 3( ) tanh ( )bv v c      n , so that 4 3 (1/ )atanh /bv c   n
3 a b   . The position is ( )x    2( )x    3( / )[cosh ( ) cosh ]ac    n n n , which finishes, since
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4 3 a    , at 4 2( ) ( )x x  . The time is 2( )t    3(1/ )[sinh ( ) sinh ]a   n n n , which gives

4 2( ) ( ) 2 ( )at t t     3 ( )a b bt     .

For the westbound cruise segment, bv v   and the Lorentz equations give 4( ) ( )t t  

( )b bv x    4( )b bv x     4( )b     and 4( ) ( )x x    ( )b bx v   4( )b bx v    4( )b bv     .

We get 5 4 b     3 2a b   ,  5( )t    4( ) b bt     3 ( ) 2a b bt      and 5( )x    4( ) b b bx v  

( )ax  .

For the final segment we again have positive acceleration, and the initial conditions are

0 ( )ax x  , 0 5( )t t  , 0 5  , 0( ) bv v   , (1/ ) atanh( / )V bv c  n  a   and 0C V   

4 2a b   . The final condition is 6( ) 0v   , where 6 C   is the round trip time. The ship’s position 

is ( )x    0x   ( / )[cosh( ( )) cosh( ( ))]C ac     n n n  0x   6( / )[cosh ( ) cosh ]ac    n n n , and 

this goes to ( ) ( ) 0a ax x   . The time is 0( )t t    6(1/ )[sinh ( ) sinh ]a   n n n , which finishes 

at 6 5( ) ( ) ( )at t x t    4 ( ) 2a b bt     .

Table 1 summarizes the results for our journey. To be clear,   is the time on Beth’s clock on the
ship, and ( )x   and ( )t   are the position and time in the Earth frame for the ship at this time  , while

( )v   is the relative velocity of the two frames, that is, of the ship relative to Earth. Elsewhere the time 
observed in the Earth frame on a clock moving with the ship is different from   by v x  , where x  

is the distance of the clock from ( )x   (in S ). The position of the Earth in the ship frame is
( ) / ( )x    .

Now let’s look at some numbers. Before we get into practical cases, we will check our results 
against those of Section 4. With 0.96bv c  and b   7 years, choose a  so that b a  . For example, 

say 6/ 10b a   , which gives 67 10a
   years. Then  (1/ ) atanh ( / )a bv c n  n 0.00881 s1 and

a  2,640,835 m s2. So we have a trip time of 6 4 2a b      14.000028 years for Beth, and for Art

6( )t    (4 / )sinh an n  2 b b    50.000049 years.

A standard choice for space voyages is a g , the 1 gee of gravity on the Earth (at sea level), 

which is 9.80665 m s2. Let’s consider our original journey, 0.96bv c  and b   7 years, with this 

acceleration. We find a  1.885 years and ( )at    3.321 years. That is, during the initial acceleration 

segment, Beth ages 1.885 years and Art ages 3.321 years.

Figure 7 shows a graph of the time on Beth’s clock  , the position of the ship (in Art’s frame)
x  and the relative velocity v , plotted against the time on Art’s clock t . In Figure 8 are plotted the 
distance from Earth and the time on Art’s clock as seen by Beth (“seen” in the sense of instant 
observation), and the time on drone clocks passing Earth as seen by Art (in real time). The drones are a 
carry-over from Section 2. If we imagine a string of them all moving in tandem with the ship but strung
out to an indefinite distance to her west, then these clocks, as they pass the Earth, show (during cruise 
segments) the double-rate we talked about in Section 2 (“outside the window”).
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Table 1. Times, positions and velocities for the round-trip.
Ship time

   
(Ship Frame)

Earth time
 t  

(Earth Frame)

Ship position
 x  

(Earth frame)

Velocity
 v  

10   

1

1
atanh b

a

v

c
  

n

1
sinh n
n

(cosh 1)
c  n
n

tanhc n

1 2   

2 a b   
( ) ( )a b at      ( ) ( )a b b ax v     tanhb av c  n

2 3   

3 2 a b   
3

2 ( )

1
sinh ( )

a b bt   

 

 

n
n

 3

2 ( )

cosh ( ) 1

a b b bx v

c

  

 

 

 n
n

3tanh ( )c   n

3 4   

4 3 a b   

same as

2 3     
same as

2 3     
same as

2 3     

4 5   

5 3 2a b   
3 ( ) ( 3 )a b at      5( ) ( )a b bx v     tanhb av c    n

5 6   

6 4 2a b   
6

4 ( ) 2

1
sinh ( )

a b bt   

 

 

n
n

6[cosh ( ) 1]
c   n
n 6tanh ( )c  n

Figure 7. Journey of Section 4 with 1-gee acceleration.

The trip time is 63.3 years, Art’s age increase, and Beth comes home 21.5 years older, having 
traveled 29 light-years and back, for a total distance of 58 light-years.
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Figure 8. Further details of Figure 7.

It is interesting to look at the effect of cruising speed bv  on the mission outcome. We have done 

this in Figure 9 by keeping a g  and b   7 years, and varying bv  from 0.5 to 0.98 c. The trip time 

for the ship goes from 16 to 23 years while the Earth time starts at a little over 18 years and climbs 
steeply to over 89 years. The round-trip distance varies from 8.7 to 84.5 light-years.

Figure 9. Times and distances for increasing cruise speed, with a g  and a total cruise time of 2
b
   14 years. 

The effect of acceleration for 0.96bv c  and b   3 years is shown in Figure 10. The greater 

distances and times for small accelerations are due to the longer periods required to attain cruising 
speed. For 1a  , changes in a  become less important compared with the fixed b .
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Figure 10. Mission outcomes for  0.96
b

v c  and 
b
   3 years with variable acceleration.

We conclude with a few key takeaways from the full calculation here. First, note that in Figure 
8, the curve showing Art’s clock in the ship frame bears out what we saw in Beth’s frame jump (from
S  to S ) in Section 4. It is the change in speed that decides the age race in Beth’s favor, as it were. 
From the beginning of her eastbound deceleration to the beginning of her westbound cruise, she sees 
Art’s clock go from 6 years behind hers to 48 years ahead (compare Beth’s clock from Figure 7).

Also interesting, from Figure 7, is that the effect of acceleration on proper time is the same for 
both directions. When Beth reverses direction in the middle of the graph, the slope /d dt  is 
continuous. The function / 1/ coshd dt  n  is an “even” function, the same for n . Moreover,

/d dt  is always less than 1, so that acceleration invariably slows aging. This is in contrast to bv  

which, so long as it lasts, affects both twins equally. Unlike velocity, acceleration is asymmetric. Beth 
feels the force of the acceleration, whereas motion at constant velocity, for Art and Beth alike, is 
undetectable of itself.

As a footnote, we point out that while the trips depicted in this section are physically realistic, 
they are, so far at least (2021), technologically beyond our ability. There is no known means of 
sustaining gee-type accelerations of macroscopic payloads for days on end, much less months. A 
practical limit with current hardware would be on the order of an hour. Looking ahead to improved 
propulsion techniques, it is also worth noting that there are other challenges, such as extended periods 
of hard radiation, which is vastly exacerbated at high speeds. Nonetheless, such journeys are fully in 
accord with the laws of physics and may one day take place.
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